Strona tytułowa

- Zasady montażu 01.1-01.24
- Przekroje montażowe
02.1-02.7

Poniższe wytyczne montażu pochodzą z

Przewodnik planowania i przeprowadzania montażu
okien i drzwi domowych

Wydanie : grudzień 2006

Wydane przez

Herausgegeben von der
RAL-Gütegemeinschaft Fenster Und Haustüren e.V.
Walter-Kolb-Strasse 1-7
60594 Frankfurt

Uzupełnione o specyficzne właściwości produktów
SALAMANDER Industrie-Produkte GmbH.
1.

Treść
2.

Wymagania
3.
3.
Mocowanie i
znoszenie obciążenia
3.
Mocowanie i
znoszenie obciążenia
2.1 Zasady
2.2 Płaszczyzny zabudowy
01.3-01.6
01.7
4.

Uszczelnienie
4.1 Płaszczyzny uszczelnień 01.13-01.14
4.2 Rodzaj fug
01.15-01.17
4.3 Systemy uszczelnień
01.15-01.17
4.3.1 Uszczelniacze
4.3.2 Impregnowane taśmy piankowe
5.

Praktyczne wykonanie
6.

Planowanie montażu
3.1 Mocowanie okien 01.8
3.2 Znoszenie obciążenia 01.9-01.10
3.3 Środki mocowania 01.11-01.12
4.3.3 Folie uszczelniające
01.19
5.1 Podokiennik 01.20
5.1.1 Detale konstrukcji
01.20
5.1.2 Mocowanie uwarunkowanych
termicznie zmian długości
5.2 Utworzenie progu 01.22-01.23

2. Wymagania

2.1 Zasady

Podwyższenie wymagań w zakresie izolacji cieplnej, szczelności powłoki budynku oraz analiza uszkodzeń w obszarze powłokowym pociąga za sobą konieczność zachowania obowiązujących norm i uwzględniania fizycznych zasad konstrukcji przy zabudowie okien i fasad.

Budowlana ustawa produktowa dyrektywy dla produktów budowlanych oraz każdorazowe krajowe przepisy budowlane zawierają następujące centralne żądanie.

Produkty budowlane mogą być stosowane tylko wtedy, gdy przy ich użyciu urządzenia budowlane, przy prawidłowym ich utrzymaniu, spełniają wymagania w czasie odpowiednim do celu i są zdatne do użytku.
Żeby uniknąć szkód w miejscach przyłączeń, należy zaplanować włączenie okien i fasad w po-budynku. Element konstrukcyjny w zabudowanym stanie podlega wymaganiom według tabeli 2.1.
Poza tym wszystkie siły działające na okno i fasadę muszą zostać odprowadzone pewnie na bryłę budowli (rysunek 2.1).

Wszystkie wymienione dotychczas wymagania i ruchy z konstrukcji ramy i z budowli należy uchwycić i skompensować w fudze przyłączeniowej.

Działania		Uregulowania	
- zewnętrzne	Deszcz, Wiatr, Zmiana temperatury / wilgotności Promieniowanie słoneczne Dźwięk (hałas zewnętrzny mechaniczna ingerencja (włamanie) agresywne wpływy środowiska	EN 12207 EN 12208 EN 12210 EN 1055 ift-Richtlinie FE-05/2 Einsaztempfehlungen für Fenster und Außentüren EN 13420 EN 12219 EN 4109	EN 12152 EN 12154 EN 13051 EN 13116
- wewnętrzne	Temperatura/wilgotność pomieszczenia	DIN 4108	
- prac budowlanych	Tolerancje, ruchy budynku	DIN 18202	
- budowli	zmiany długości, kształt deformacji	DIN 1055	
- użytkowe	Siły pochodzące od użytkowania Obciążenia, uderzenia	EN 13049 EN 13115	EN 14019

Tabela 2.1. Przegląd działań na okna, drzwi zewnętrzne i fasady z ważnymi uregulowaniami.

Żeby ustalić wymagania, potrzebna jest przede wszystkim wiedza o możliwych oddziaływaniach na okna będące zewnętrznym elementem budowli. Takie oddziaływania przedstawia schematycznie poniższy rysunek.

Zewnątrz

Promieniowanie
Ruchy budynku

Właściwości palne

Wilgotność pomieszczenia
Umiarkowana temperatura

Wentylacja

Duże różnice temperatur
 zewnętrzny

Rys. 2.1 Schematycznie przedstawienie działań na połączenie okna-dla fasad obowiązują porównywalne wymagania.

Prawidłowe połączenie wspólnych elementów konstrukcji, geometrii, izolacji i uszczelnienia ma ogromne znaczenie dla spełnienia powyższych wymogów. Trwałość połączenia i zdolność użytkowa okna utrzymuje się lub spada w zależności od montażu i szkolenia w zakresie montażu.
Do oceny tego, czy i w jakim zakresie okno zamontowane w ścianie zewnętrznej sprosta wymaganiom, które wynikaja z wpływów otoczenia, przydatny jest model płaszczyznowy przedstawiony na rysunku

Podstawowe wymagania fizyczne są spełniane w trzech oddzielnych płaszczyznach funkcyjnych, funkcje są skondensowane w obszarze leżącym pomiędzy tymi płaszczyznami i są przetwarzane na właściwości techniczne. Te poszczególne płaszczyzny i obszar muszą zostać jasno zdefiniowane w konstrukcji i być wykonalne.

Płaszczyzna (1) Rozdzielenie klimatu pomieszczenia i klimatu na zewnątrz (płaszczyzna gęstości powietrza)

To rozdzielenie musi nastąpić w płaszczyźnie, w której temperatura jest wyższa od krytycznej temperatury rozwoju pleśni (kryterium 80\% wilgotności powietrza) klimatu pomieszczenia.
Płaszczyzna taka musi być rozpoznawalna na całej powierzchni ściany zewnętrznej i nie może być przerwana.
$\begin{array}{ll}\text { Obszar (2) } & \text { Obszar funkcjonalny } \\ \text { Przedstawiona schematycznie ochrona przez wpływami atmosferycznymi } \\ \text { powinna zasadniczo } \\ \text { Wykazywać możliwość udoskonalenia konstrukcyjnego oraz wymagane } \\ \text { wyrównanie wilgotności od klimatu zewnętrznego. } \\ & \begin{array}{l}\text { Opisany model obowiązuje w ogólności do środkowoeuropejskich warunków } \\ \text { klimatycznych i jest dostosowany do pomieszczeń z normalnym klimatem } \\ \text { wewnętrznym. W przypadku pomieszczeń chłodzonych i klimatyzowanych }\end{array} \\ \begin{array}{l}\text { system powinien zostać sprawdzony w odniesieniu do obiektu. W rozważaniach } \\ \text { i ocenie uwzględniona być musi cała ściana zewnętrzna. Model taki nie } \\ \text { obowiązuje dla pomieszczeń chłodniczych i budynków na obszarach } \\ \text { tropikalnych. } \\ \text { Żeby sprostać wymaganiom dotyczącym zdolności użytkowej okien i fasad, } \\ \text { obowiązuje dla utworzenia połączenia: }\end{array}\end{array}$

- Klarowne rozdzielenie płaszczyzn funkcjonalnych i obszaru funkcji,
- Zabezpieczenie fugi połączenia przed obciążeniami ze strony zewnętrznej i ze strony pomieszczenia.

Wykonanie konstrukcji po stronie pomieszczenia musi być dookoła hermetyczne. (płaszczyzna (1)).

Rozdzielenie klimatu pomieszczenia od klimatu zewnętrznego (płaszczyzna (1)) należy wykonać jako bardziej szczelne dla dyfuzji pary niż zabezpieczenie przed wpływami atmosferycznymi (płaszczyzna (3)).

[^0]再
zabezpieczenie przed wpływami atmosferycznymi (3)

Przedstawione Przedstawione schematyczie zabezpieczenie przed wpływami atmosferycznymi jest porównywalne z pokryciem dachowym i przenosi się na całą ścianę zewnętrzną
obszar funkcjonalny (np. dźwięk, ciepło)
(2)

rozdzielenie klimatu pomieszczenia od klimatu zewnętrznego

Rys. 2.2 Model płaszczyzn

2.2 Zabudowy

Zalecenia dla płaszczyzn zabudowy okien i fasad w obszarze ościeżnicy (odpowiednio do danego systemu ściany zewnętrznej).

Korzystnymi płaszczyznami zabudowy okien i fasad do zapobiegania powstawaniu wody kondensacyjnej oraz redukcji strat ciepła są:

- Przy monolitycznej ścianie zewnętrznej środkowa część ościeża
- Przy izolujących ciepło systemach ścian zewnętrznych obszar warstwy izolacyjnej.

Przebieg temperatury przez ścianę zewnętrzną i przez element okna jest do tego określony (przebieg izotermiczny, patrz rysunek poniżej).

Zabudowa na zewnątrz

Zabudowa wewnętrzna

Zabudowa środkowa

Zabudowa w strefie izolacji

3. Montaż i przeniesienie obciążenia

Mocowanie okien, fasad i okładzin ściennych musi wyprowadza pewne i trwale do bryły budynku i gruntu wszystkie siły działające planowo na te elementy.

Siły powstają w wyniku następujących obciążeń:

- Obciążenia ciężarem własnym
- Obciążenie wiatrem
- Obciążenie ruchowe
- Części ruchome (np. skrzydła okienne)

Należy je określić zgodnie z DN 1055. Należy przy tym uwzględnić zmiany kształtu wynikające z temperatury, skurczu i pełzania.

Na bazie obowiązujących krajowych przepisów budowlanych, budowle włącznie elementami konstrukcyjnymi muszą być tak planowane i wznoszone, żeby nie obniżały bezpieczeństwa publicznego. Takiej myśli przewodniej odpowiadać musi również mocowanie wszystkich okien, fasad i okładzin ściennych.

3.1 Montaż okna

W ramach tych wytycznych montażowych pod pojęciem okien należy rozumieć elementy konstrukcyjne zaopatrzone w obejmującą je gotową ramę. W przypadku ścian okiennych następuje dwustronne mocowanie przelotowe.

Zamocowanie okna ma następować z uwzględnieniem specyficznych parametrów materiału ramy i ściany, odprowadzenia obciążeń i środka mocującego.

3.2 Montaż fasady

W ramach tego podręcznika pod pojęciem fasady należy rozumieć wielkowymiarowy element konstrukcyjny z wysokości co najmniej kondygnacji.

Fasady są kompletowane systemem zabudowy pojedynczych części na miejscu jako konstrukcja słupków i rygli lub też jako fabrycznie wykonany zespół z otaczającą go ramą

Element fasady montowany jest wraz ze wszystkimi częściami wypełnienia (np. skrzydło okna)
Fasady tworzą lekkie, zamykające przestrzeń osłony, które samodzielnie lub w połączeniu z bryłą budynku spełniają wszystkie normalne funkcje ściany zewnętrznej, jednak nie przyczyniają się do przyjmujących obciążenie właściwości bryły budynku

Dla mocowanie oznacza to, że stosować należy tylko elementy mocujące z dopuszczeniem nadzoru budowlanego
Płaszczyzna zabudowy jako osłony zamykającej przestrzeń, leży najczęściej przed nośnymi częściami budowli.

3.2 Przeniesienie obciążeń

Siły w płaszczyźnie okna (ciężar własny), przy wstawionych oknach są odprowadzane poprzez klocki nośne do budowli. Są one obciążane naciskiem. W przypadku wielowarstwowych systemów ściennych, w których okno osadzone jest w strefie izolacyjnej przez ścianę nośna, siły te muszą zostać odprowadzone poprzez kątowniki metalowe lub konsole do warstwy nośnej (rysunek 3.1).

Kołki, nakładki, miejscowe pianki i tym podobne są niewystarczające do przenoszenia obciążeń działających w płaszczyżnie okna.

Rys. $3.1 \quad$ przenoszenie sił przez klocki w jednowarstwowym wielowarstwowym systemie ściennym

Profile ramowe muszą posiadać wystarczającą wytrzymałość na zginanie. Klocki nośne należy umieścić w narożnikach ramy, w obszarze słupków i rozpór (rygli), w zależności od rodzaju otwierania.

Układ klocków lub elementów odprowadzających obciążenie musi być taki, żeby uniemożliwiał utwierdzenie ramy (rysunek (3.2)

Wymiarowanie klocków musi być takie, żeby można było łatwo przeprowadzić następne uszczelnienia.
Należy je dostosować do grubości ramy. Materiał klocków nośnych klocków musi mieć trwałą stabilność kształtów i posiadać niewielką przewodność cieplną.

W przypadku okien sięgających do podłogi I drzwi balkonowe), od jednego metra szerokości należy wstawić klocki nośne również w środku na dolnym profilu ramy.

Należy mieć na uwadze to, żeby przez nadmierne dociąganie środków mocujących (np. śrub), nie następowało przesuniecie położenia elementów konstrukcyjnych ramy.

Kliny służące jako środki unieruchomienia pomocniczego podczas montażu, muszą zostać usunięte po zamocowaniu.

Uchylne

Rozwierno-uchylne

- = klocek nośny

ص = klocek dystansowy

Rys. 3.2 Ułożenie klocków nośnych i dystansowych

3.3 Środki mocowania

Kryteria ,według których wybierane są środki mocowania, zależne są od:

- systemu ściany
- sytuacji budowy (stara/nowa)
- materiału ramy
- obciążenia

W grę wchodzą:

Kołki ramy
Są one obciążane naprężeniami gnącymi, tnącymi i ścinającymi. Dlatego, w szczególności przy dużych obciążeniach, użycie kołków do ramy napotyka granice z powodu koniecznego odstępu pomiędzy ścianą i ramą. Przy doborze i wymiarowaniu przestrzegać dane producenta.

Nakładki (łączniki)

Nakładki są relatywnie podatne na zginanie. Mogą więc dobrze przejmować termiczne zmiany długości materiału ramy. Nakładki mogą przejmować tylko obciążenia prostopadłe do płaszczyzny okna.

Kątowniki

Kątowniki mocujące są z reguły sztywne na zginanie i przez to wprowadzają do budowli większe obciążenia. Są stosowane często przy ścianach okiennych, drzwiach sięgających do podłogi, itp.

Są one mocowane kołkami albo dospawane do części metalowej zabudowanej w budowli.

Konsole (wsporniki)

Jeżeli w przypadku ściany wielowarstwowej okno jest osadzone w strefie izolacji, to wtedy wymagane są konstrukcje podpierające, np. konsole i inne.

Samo zamocowanie należy tak zwymiarować, żeby przejmowane były oczekiwane obciążenia wiatrem i obciążenia ruchome, a ciężar własny, również przy otwartym skrzydle mógł zostać odprowadzony prostopadle do płaszczyzny okna.

Metalowe elementy konstrukcyjne w fudze połączeniowej to nieuniknione słabe miejsca techniki cieplnej. Środki mocujące należy więc tak ustawiać w połączeniu z materiałami izolacyjnymi, żeby nie powstawały mostki cieplne.

Odstępy pomiędzy mocowaniami

Żeby uwzględnić wydłużenie (zmianę długości) materiału ramy, należy utrzymać odstępy pomiędzy mocowaniami, jak to przedstawia rysunek 3.3

Wykluczyć należy odkształcenia montażowe w obszarach narożnikowych falcu i ramy. W przypadku użycia kołków do ramy lub porównywalnych elementów mocujących należy mieć na uwadze odpowiedni moment obrotowy. W szczególności dla elementów kolorowych należy unikać naprężeń rozciągających w rogach ramy.

Rys. 3.3 Odstępy między mocowaniem

Okno mocować dookoła. W obszarze skrzynki roletowej należy tak zwymiarować górny profil ramy, żeby mógł on przejmować działające siły.

W przypadku szeroko mocowanych elementów okiennych wymagane może być użycie usztywnień i wsporników nośnych. Te ostatnie musza dać się zdemontować do zakładania rolet.

A: odstęp pomiędzy zakotwieniami
dla okien z tworzyw sztucznych maks. 700 mm

E: odstęp od narożnika wewnętrznego
odstęp od wewnętrznego rogu ramy, a w przypadku słupków od wewnętrznej strony profilu (białego) wynosi 100 do 150 mm .
Dla profilu kolorowego odstęp ten wynosi 150 mm .

Wskazówka dot. zmiany długości:

Materiał profili okiennych	Zmiana długości okna z PVC o szerokości 1 m
PVC twarde (białe)	$2,5 \mathrm{~mm}$
PVC twarde	Różnica temperatur $\Delta_{t}=60^{\circ} \mathrm{C}$
(okleinowane/laminowane)	5 mm Różnica temperatur $\Delta_{t}=90^{\circ} \mathrm{C}$

4. Uszczelnienie

Fachowe uszczelnienie fugi połączeniowej okien i fasad do bryły budowli zapewnia przydatność użytkową. Wadliwe uszczelnienie jest najczęstszą główną przyczyną uszkodzeń. Najważniejszymi funkcjami uszczelnienia (porównaj z rysunkiem 2.2) są:

- rozdzielenie pomiędzy klimatem pomieszczenia i klimatem zewnętrznym-płaszczyzna funkcjonalna (1) -hamowanie pary, blokada dla wiatru i hermetyczność.
- Ochrona przed dźwiękami
- Izolacja cieplna (ochrona przed wodą kondensacyjna) w fudze - obszar funkcjonalny (2)
- Zapora dla deszczu- płaszczyzna funkcjonalna (3)

-

W zależności od systemu ściany zewnętrznej uzyskuje się różne połączenia pomiędzy elementem budowlanym i ścianą. W przypadku zwykłego wykonania uzyskuje się fugę pomiędzy ścianą zewnętrzną i konstrukcją ramy, która musi uszczelniać przed dostępem wilgoci nie tylko od strony zewnętrznej lecz także od strony pomieszczenia.

4.1 Płaszczyzny uszczelnień

Przy planowaniu i realizacji należy bezwarunkowo przestrzegać, żeby rozdzielenie klimatu pomieszczenia od klimatu zewnętrznego było dookoła trwale szczelniejsze dla dyfuzji pary niż jako ochrona przed wpływami atmosferycznymi. Obowiązuje to również dla rozważań płaszczyzn uszczelniających .
Należy uniemożliwić wchodzenie wilgoci z pomieszczenia do fugi. Ewentualnie wchodząca wilgoć musi być kontrolowana i kierowana na zewnątrz.
Uszczelnienie przed wilgotnością powietrza z pomieszczenia należy usytuować zasadniczo po stronie pomieszczenia. Uniemożliwia ono przenikanie wilgoci i powietrza z pomieszczenia do konstrukcji, a następnie w miejscach, których temperatura powierzchni jest niższa od punktu rosy, wilgoć ta wypływa jako woda kondensacyjna.

Płaszczyzna (1) ma zabezpieczyć to wymaganie.

Ochrona przed wpływami atmosferycznymi składa się z zapory przed wiatrem i deszczem. Może zostać ona utworzona w płaszczyźnie (3) albo w kombinacji z płaszczyzną (1). Decydujący jest rodzaj systemu ściany zewnętrznej.

Przy jednakowych brzegowych warunkach klimatycznych zawartość wilgoci w fudze określa się przez położenie w niej systemu uszczelniającego.

Uszczelnienie hermetyczne w płaszczyźnie (1) uniemożliwia wpływanie powietrza z pomieszczenia do fugi. Przez bardziej szczelne dla dyfuzji pary wykształcenie uszczelnienia wewnętrznego zapobiega się spiętrzeniu dyfuzji w fudze połączenia

W przypadku uszczelnienia płaszczyzny (3) i otwartej fudze na stronę pomieszczenia, powietrze z pomieszczenia wnikałoby do fugi. Rośnie wtedy zawartość wilgoci w fudze i w graniczących z nią materiałach. Temperatura fugi odpowiada temperaturze punktu rosy i przez to wypada woda kondensacyjna (rysunek 4.1).

Rys. 4.1 Układ systemów uszczelniających w połączeniu

4.2 Fuga ruchoma (szczelina dylatacyjna)

Fuga ruchoma (dylatacyjna) to taka, w której podczas użytkowania należy liczyć się ze zmianami jej szerokości.

Takie szczeliny mogą być uszczelnione uszczelniaczami wyłłaczanymi, impregnowanymi taśmami uszczelniającymi z tworzywa piankowego lub foliowymi systemami uszczelniającymi.

Uszczelnienie pomiędzy profilem końcowym tynku i oknem z PVC

Uszczelnienie wstępnie ściśniętę taśmą uszczelniającą z listwą na tynku

4.3 Systemy uszczelnień

4.3.1 Uszczelniacze

Przetwarzanie i wybór uszczelniaczy jest kompleksowy. Poniżej zwracamy uwage tylko na niektóre istotne punkty.

Fuga (szczelina) połączeniowa pomiędzy oknem i bryłą budynku jest szczeliną dylatacyjną (ruchoma) i do tego należy dopasować uszczelniacz.

Żeby zapewnić trwałą, zdolną do funkcjonowania uszczelnianą fugę, ważne jest to, żeby materiał uszczelniający miał dobre sklejanie z powierzchniami przyczepnymi. Uszczelnianie uszczelniaczem na tynku jest wtedy właściwe, gdy zapewnione są następujące warunki:

- Do tego zakresu zastosowania użyty musi zostać odpowiedni uszczelniacz. Taki uszczelniacz powinien wykazywać całkowite odkształcenie dopuszczalne 25% i wartość naprężenia odkształcenia maks. 0,2N/mm2 przy temperaturze pomiarowej 10 oC .
- Dostateczne zwymiarowanie przekroju poprzecznego fugi zależy od oczekiwanych zmian termicznych długości profili okiennych lub zewnętrznego podokiennika (deski parapetowej), zależne od materiału, koloru, długości profili okiennych lub podokiennika i od właściwości użytego materiału uszczelniającego.
- Tynk musi wykazywać dostateczną wytrzymałość przyczepności na rozciąganie, żeby mógł przejmować bez uszkodzeń naprężenia rozciągające od uszczelniacza.

Naprężenia występujące w uszczelniaczu działają bezpośrednio na powierzchnie przyczepne. Jeżeli zawiedzie sklejanie albo uszczelniacz stanie się kruchy, to wtedy uszczelnienie nie może już przekazać sił do powierzchni przyczepnych. Fuga staje się nieszczelna.

Poza tym należy uważać na to, jaki uszczelniacz wchodzi w kontakt z różnymi powierzchniami przyczepnymi. Przykładowo uszczelniacz reagujący kwasowo i wydzielajacy kwas octowy nie może być stosowany na blachę ocynkowaną, kamień naturalny ciosany i tym podobny materiał, ponieważ takie materiały nie znoszą się.

Uszczelniacze należy stosować z niewsysającym, posiadającym zamknięte komórki tylnym materiałem wypełniającym. Włożony z tyłu materiał wypełniający tworzy ograniczenie fugi u podstawy.

Stosunek głębokości do szerokości powinien być następujący:
$t=0,5 \times b \geqslant 6 \mathrm{~mm}$
$t=$ Głębokość uszczelnienia w fudze
$b=$ Szerokość uszczelnienia w fudze

Utworzenie fugi ruchomej (szczeliny dylatacyjnej) z uszczelniaczem i materiałem wypełniającym z tyłu.

Tabela 01 Zalecane szerokości b fugi (szczeliny) do wypełniania fug połączeniowych uszczelniaczem

	$\mathrm{b}_{\text {Sta }}$ dla uszczelniaczy z dopuszczalnym odkształceniem całkowitym 25\% $\mathrm{b}_{\text {Sti }}$ dla uszczelniaczy z dopuszczalnym odkształceniem całkowitym > 15\%				$\mathrm{b}_{\text {Aa }}$ dla uszczelniaczy z dopuszczalnym odkształceniem całkowitym 25\% $\mathrm{b}_{\text {Sti }}$ dla uszczelniaczy z dopuszczalnym odkształceniem całkowitym > 15\%		
	Długość elementu w m						
	do 1,5	do 2,5	do 3,5	do 4,5	do 2,5	do 3,5	do 4,5
	Minimalna szerokość fugi dla węgarka czołowego $\mathrm{b}_{\mathrm{St}} \mathrm{w} \mathrm{mm}$				Minimalna szerokość fugi dla węgarka wewnętrznego $\mathrm{b}_{\mathrm{A}} \mathrm{w} \mathrm{mm}$		
PVC twarde (biały)	10	15	20	25	10	10	15
PVC twarde oraz PMMA (ciemne, coextrudowane kolor)	15	20	25	30	10	15	20
b Sti Szerokość fugi dla węgarków czołowych, wewnątrz b Sta Szerokość fugi dla węgarków czołowych, zewnątrz b Aa Szerokość fugi dla węgarków wewnętrznych							

4.3.2 Impregnowane taśmy piankowe

Pod pojęciem „Impregnowanych taśm piankowych" rozumieć należy taśmy uszczelniające wykonywane z pianki i służące do uszczelnienia szczelin budowlanych.

Poniżej nazywane są one w skrócie taśmami uszczelniającymi. Przeważnie składają się one z pianki poliuretanowej o otwartych komórkach, w której umieszczony został impregnat. Taśma uszczelniająca dostarczana jest w postaci ściśniętej.

Miarodajne dla działania taśm uszczelniających jest między innymi zachowanie dostatecznego stopnia sprężenia w stanie zabudowanym. Dla różnych szerokości szczelin do dyspozycji są różne wymiary taśm. Nie wolno przekraczać tak w dół jak i w górę, wytycznych producenta taśmy dla szerokości fug. Obowiązuje to również w miejscach nierówności. Na bryle budynku jak i na dołączanym elemencie budowlanym muszą być odpowiednie powierzchnie dociskowe.
Szerokości szczelin podane w tabeli poniżej są wartościami orientacyjnymi. Uwzględniać należy ewentualnie instrukcje producenta.

Taśmy uszczelniające dysponują niewielka opornością względem dyfuzji pary wodnej. Można przez to wytworzyć dobre wyrównywanie wilgoci w szczelinie przy jednoczesnym wykonaniu ze szczelnością na uderzenia deszczu. Właściwość ta może zostać wykorzystana przy przekształcaniu fizycznej zasady budowlanej „wewnątrz szczelniej niż na zewnątrz".

Tabela 02 Orientacyjne wartości dla szerokości b fug węgarkowych taśmami rozprężnymi

Dla tych minimalnych szerokości fug należy stosować impregnowane taśmy uszczelniające z tworzywa piankowego według DIN 18542. Stosować w uzgodnieniu z inwestorem budowy

4.3.3. Folie uszczelniające

Folie uszczelniające są przydatne w szczególności przy większych szczelinach (powyżej około 20mm) i przy wykonaniach budowlanych skorupowych. Są one w stanie przejmować stosunkowo duże ruchy.

Folie uszczelniające w obszarze zewnętrznym spełniają głównie funkcję kontrolowanego odprowadzania wody.
Przy stosowaniu folii uszczelniających należy uwzględnić wartość $s d$ (= wymiar przepuszczalności pary wodnej) systemu. Folie uszczelniające w obszarze wewnętrznym są przyklejane nie tylko do ościeżnicy lecz także do bryły budynku, przez co następuje zamknięcie fugi (szczeliny).

W obszarze zewnętrznym szczelne dla dyfuzji pary wodnej folie uszczelniające nie mogą być gęsto sklejane. W obszarze górnym folię należy przyklejać do budowli, ewentualnie dodatkowo zgodnie z danymi producenta mocować mechanicznie i uszczelnić. Przyłączenie do ościeżnicy musi być takie, żeby możliwe było wyrównanie ciśnienia pary na zewnątrz (rysunek 1).
Rysunek (2) przedstawia wariant z otwartą na dyfuzję folię bez dodatkowych otworów.

- - Zapora dla deszczu

Zapora wiatrowa

Płaszczyzna podziału klimatu wew. i zew.

\bullet	\bullet	\bullet	Zapora dla deszczu

5 Praktyczne wykonanie

5.1 Podokiennik

5.1.1 Detale konstrukcji

Zewnętrzny podokiennik odprowadzać w sposób kontrolowany wodę spływającą z powierzchni okna i fasady. Dlatego też przestrzegać należy uwzględnienie szczegółów przedstawionych na rysunku.
Dołączenie podokiennika do ościeżnicy i ościeża musi być szczelne. Poza tym dołączenie na ościeżnicy musi być jeszcze ślizgowe, np. przez wyposażenie połączeń śrubowych w otwory podłużne i podkładki z tworzywa sztucznego.
Jeżeli nasadzane elementy końcowe podokiennika nie mają szczelności na uderzenia deszczu, to wtedy należy utworzyć wanienkowe pasmo uszczelniające pod podokiennikiem spełniające rolę drugiej płaszczyzny prowadzącej wodę. Jeżeli pod podokiennikiem umieszczona jest izolacja cieplna, to wtedy pasmo uszczelniające należy ułożyć na izolacji, żeby zabezpieczyć ją również przez zawilgoceniem.

1. Podokiennik aluminiowy, pochylenie ≥ 50
2. Folia uszczelniajaca z bocznym uksztatowaniem wanienkowym
3. Połączenie śrubowe (śruby należy uszczelnić, ustalić odstęp, uwzględnić termiczne zmiany długości)
4. Występ poza fasadę $\geq 20 \mathrm{~mm}$ (DIN 18339)- zalecamy $30-40 \mathrm{~mm}$
5. Rozdzielenie klimatu pomieszczenia od klimatu zewnętrznego
6. Izolacja pomiędzy ościeżnica i bryłą budynku
7. Tłumienie huczenia (dudnienia) (stosować według danych producenta)
8. Dodatkowe elementy ustalajace przy występie $\geq 150 \mathrm{~mm}$ w odstępach co 90 cm (lub według danych producenta).

Przykład:
Sytuacja zabudowy w wielowarstwowej ścianie zewnętrznej z izolacją rdzeniowa.

Połączenie podokiennika z ościeżem i ościeżnicą musi być deszczoszczelne. Może to mieć postać wanienkowego wytłoczonego pasma uszczelniającego pod podokiennikiem (rysunek 5.2).

Jeżeli pod podokiennikiem jest umieszczona izolacja cieplna, to wtedy pasmo uszczelniające należy ułożyć na tej izolacji.

Rys. 5.2 Uszczelnienie narożników podokiennika przez wanienkowe wytłoczone pasma uszczelniające

5.1.2 Mocowanie warunkowanych termicznie zmian długości

Podokienniki aluminiowe co najmniej co 3000 mm muszą posiadać styk wydłużeniowy.
Łapki dolne styku podginanego muszą być tak wykonane żeby uniknąć trzasków powodowanych termicznymi zmianami długości. Muszą być one tak wytworzone, żeby woda opadowa była odprowadzana na zewnątrz.

5.2 Utworzenie progu

Uregulowania dotyczące uszczelnienia połączenia dolnego są nakierowane w pierwszym rzędzie na ścianę zewnętrzną i wymagają środków do ochrony przed wnikaniem wody w celu zapobiegania uszkodzeniom w ścianie zewnętrznej. Należy przy tym przyjąć jako wystarczającą wysokość uszczelnienia 150 mm nad przewodzącą wodę warstwą. Jednocześnie należy zwrócić uwagę na wyjątkowe oprawianie okien i drzwi okiennych (sięgających do podłogi).

Przestrzegać należy następujące kryteria oprawiania okien i drzwi okiennych:

1. Zabezpieczenie ściany zewnętrznej graniczącej z boku z oknami i drzwiami okiennymi, przy czym połączenia na ścianie muszą zabezpieczać wysokość uszczelnienia.
2. Zabezpieczenie ściany zewnętrznej graniczącej z dołu z oknami i drzwiami okiennymi, przy czym połączenia muszą być trwale szczelne.
3. Rzeczywiście oczekiwane obciążenie połączenia okien i drzwi okiennych przez nienaciskającą wodę z opadów i roztopów.
4. Żądana wysokość progu z użytkowania pomieszczenia w szczególności przy użytkowaniu wózków inwalidzkich.

Wynika z tego to, że przekroczenie w dół wysokości uszczelnienia, co opisują reguły, jest dopuszczalne i częściowo wymagane, przy czym konieczne są ewentualne osłonowe środki zaradcze do unikania szkód powodowanych przez wilgoć (tabela 5.1).

Zachowanie wysokości uszczelnienia nie jest więc wystarczającą cechą dla szczelnego połączenia.

Do ochrony ściany zewnętrznej przed nienaciskającą wodą w obszarze drzwi okiennych (sięgających do podłogi) dopuszczalne są różne możliwości wykonania (tabela 5.1). Przy fachowym uszczelnieniu strony zewnętrznej, we wszystkich wykonaniach możliwa jest wystarczająca ochrona ściany zewnętrznej.

Wysokość progu należy uzgodnić z inwestorem przed wykonaniem.
Tabela 03 Wymagania stawiane uszczelnieniu dolnego obszaru połączenia

Możliwości wykonawcze dolnego połączenia	Wymagania stawiane dolnemu połączeniu zgodnie z uregulowaniami prawnymi
	DIN 18195. Uszczelnienia budowli- część 9: przenikania , przejścia, połączenia i zamknięcia 5.4.2 Cokół budynku dla zamknięcia uszczelnień według DIN 18195-4 i DIN 181496-6, rozdział 9 ... w stanie końcowym wartość ta nie powinna przekroczyć wymiaru 150 mm . 5.4.3 zamknięcia w przypadku uszczelnień według DIN 18195-5 ... otwierające się elementy budowlane należy tak ukształtować, żeby uszczelnienie było prowadzone do góry aż powyżej najbardziej niekorzystnego występowania obciążenia wodą z powierzchni, natryskiwania i/lub sączenia, z reguły co najmniej 150 mm powyżej warstwy zabezpieczającej, powierzchni okładziny albo nasypki i na znacznej części kompletnej, płaskiej nośnej warstwie tylnej było zabezpieczone przed wyślizgiwaniem się i schowane.

Tabela 03 (część 2) Wymagania stawiane uszczelenieniom dolnego obszaru połączenia (progi).

Przekroczenie wysokości uszczelnienia jest dopuszczalne uwzględniając osłonięcie	5.4.4 Układ uszczelnień progów drzwi ... wymienione wysokości uszczelnienia w poszczególnym przypadku nie zostały wytworzone (np. wejście do domów przyjazne dla osób niepelnosprawnych, drzwi tarasowe, balkonowe i na tarasy dachowe), to wtedy należy tam zaplanować szczególne środki zapobiegające wnikaniu wody lub uszczelkę z tyłu. I tak przykładowo progi i słupki drzwi należy przemieścić do tyłu albo na ich powierzchni zewnętrznej tak to ukształtować, żeby była możliwość wodoszczelnego przyłączenia uszczelki np. za pomocą profili zaciskowych. Zakończenie progów z niewielkim okantowaniem lub bez niego należy dodatkowo zabezpieczyć przed silnym obciążeniem przez wodę np. przez wystarczająco duże podcienia, wgłębienia fasady illub bezpośrednio odwadniające rynny z rusztami kratkowymi, ...
	5.3 Przyłączenia do drzwi 1.Wysokość przyłączenia powinna wynosić $0,15 m$ nad powierzchnią wykładziny lub nasypki żwirowej,... 2. Zmniejszenie wysokości przyłączenia jest możliwe wtedy, gdy w warunkach miejscowych w każdym czasie zapewniony jest prawidłowy odpływ wody w obszarze drzwi. Taki przypadek występuje, jeżeli w bezpośrednim obszarze drzwi znajduja się odpływy tarasowe lub są inne możliwości odwodnienia. W takich przypadkach jednak wysokość przyłączenia musi wynosić co najmniej 0,05 m (górny koniec uszczelnienia albo od blach przyłaczeniowych pod okapnikiem (profilem cokołu) Przejścia bez barier są konstrukcjami specjalnymi,...
	DIN 18024.Budownictwo bez barier- część 2: Publicznie dostępne budynki i miejsca pracy; Podstawy planowania. DIN 18025. Mieszkania bez barier- Część 1: Mieszkania dl użytkowników poruszających się na wózkach inwalidzkich; podstawy planowania Część 2: Podstawy planowania Zasadniczo należy unikać dolnych progów i węgarków drzwi. O ile wymagane są one technicznie, to nie powinny być wyższe niż 20 mm .
np. drzwi tarasowe	Przekroczenie w dół wysokości uszczelniania z powodu wyżej wymienionych przykładów jest dopuszczalne i częściowo konieczne, przy czym wymagane są ewentualnie środki osłaniające w celu uniknięcia szkód powodowanych przez wilgoć. I tak powinno zostać wykonane przykrycie dachowe i/lub w bezpośrednim obszarze drzwi np. odpływy tarasowe i inne możliwości odwadniania.
Zachowanie wysokości uszczelnienia NIE JEST wystarczającą cechą szczelnego połączenia	

Montaż

6. Planowanie montażu *

Planować należy zabudowę okien, fasad i drzwi zewnętrznych. Nieodzowne kroki robocze do tego celu przedstawia rysunek 1.7

*Wyciąg z: Leitfaden zur Montage 2006-1
RAL-Gütegemeinschaft
Fenster und Haustüren e.V.

Uszczelnienie z trwałego, neutralnego szczeliwa nadające się do PVC i stali ocynkowanej

Uszczelnienie z trwałego, neutralnego szczeliwa nadające się do
PVC i stali ocynkowanej

Folia
paroprzepuszczalna

Uszczelnienie z trwałego, neutralnego szczeliwa nadające się do PVC i stali ocynkowanej

zolacja

[^0]: Obszar (3) Zabezpieczenie przed wpływami atmosferycznymi.
 Zapewnić należy szczelność przeciwdeszczową zewnętrznej płaszczyzny zabezpieczenia przed wpływami atmosferycznymi (płaszczyzna (3)). Wnikająca
 ewentualnie wilgoć musi być kontrolowana i móc być odprowadzana na zabezpieczenia przed wpływami atmosferycznymi (płaszczyzna (3)). Wnikająca
 ewentualnie wilgoć musi być kontrolowana i móc być odprowadzana na zewnatrz.

